

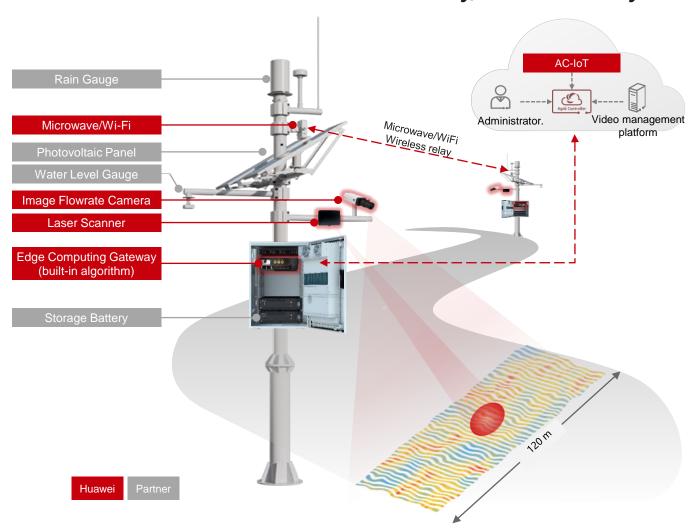
Water Management Digitalization A HUAWEI STORY IN CHINA AND AROUND APAC

Dr Rex Hou
Chief Technical Officer
Huawei EBG

Shen Zhen Smart Water Management

Shen Zhen Water Management Digitalization Roadmap

By 2025, achieve Full Digital Coverage Of Water Asset Management, establish Digital Twin River Basins, and develop a Smart Management System For Water Forecasting, Early Warning, Planning, And Simulation

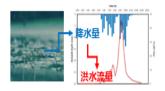

□ Data Governance:	Deepen cloud,	Al, big data ı	use. Establis	h water d	lata center.	Enhance da	ta
management, security,	, and sharing						

- ☐ Smart Monitoring: Refine perception monitoring, establish asset data collection for larger scales, achieve full asset awareness
- □ Improve Management: Smart water management system with 'four forecasting' capabilities, enabling streamlined government services, unified governance, and collaborative operations
- □ **Digital Basin:** Enhance integration of GIS, BIM, IoT, etc. Build 3D spatial and data analysis models for watersheds and reservoirs, focusing on creating digital watersheds

Smart Monitoring: Video Analytic + FMCW Radar Accurate Discharge Measurement

Integrated Monitoring of Water Level, Rainfall, Water Quality, and Video Analytics

Improved Management: Al Flood Forecast Prediction Model


Challenges

Traditional Single-Point Rainfall Forecast

PREDICTION UNIT

- **Watershed Outlet** Section
- **Single Point**

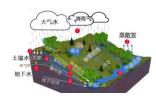
FORECAST START TIME

Forecast After The Rain Falls

Blank Forecast Areas

Lack of forecast for medium and small rivers leads to untimely early warning

Insufficient Notification in Forecast Period


The foresight period is only surface runoff time, and the response coordination time is insufficient.

Cloud Computing Forecast Service

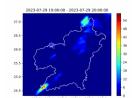
PREDICTION UNIT

Any location in the watershed

Service

Upgrade

Pipe Network


FORECAST START TIME

Forecast from the Cloud **Atmospheric Vapour**

Solution

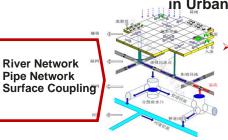
Pangu Multiscale Precipitation Forecast (AI)

- Medium-term precipitation forecast: 0-10 days, 0.25-0.1°, overall forecast of atmospheric circulation situation field
- Short-term impending precipitation forecast: 0-6h, km level, extrapolation learning of rain radar

Meteorological Hydrological Coupling

Challenges

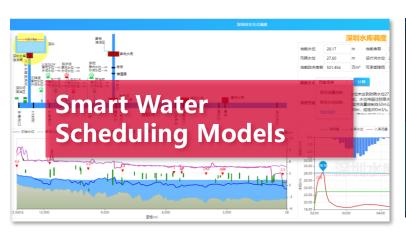
Water and Rainfall Base of the Whole **River Network (HPC)**



River computing: parallel computing algorithm for tens of millions of river segments, updating flood flow in minutes

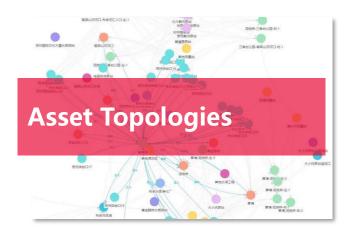
Basic software

Bisheng compiler, Kunpeng math library, and Hyper MPI communication library


Identification of Flooding Development in Urban Areas (AI)

Hydrodynamic equation acceleration: AI solution of the core equation (shallow water equation) of water inundation is accelerated by 1-2 orders of magnitude, and real-time preview and identification of flooded points under different rainfall

Digital Basin: Basin and Watershed Management



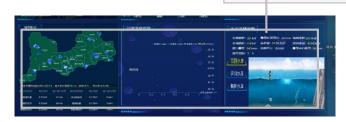
Basin Analysis

- Flood Control and Drainage Scheduling Model
- Water Quality Simulation Model
- Water Environment Scheduling Model
- Analysis of the Causes of Water Pollution from Rainfall Overflow in River Channels

- One Portal for all Basin and Watershed Based
- Collect and Govern all related data and information in one Database

- Shenzhen River Basin Management Element Topological
- Historical River Rainfall Overflow Pollution Pattern
- Smart River Knowledge Graph

Digital Basin: One Map to Manage Reservoirs Digitally



Integrated Visualization: Use BIM and GIS to combine data on water, rainfall, engineering, water quality, quantity, and video feeds.

Real-Time Monitoring and Query: Dynamically monitor reservoir operations with an all-inclusive "single map".

Comprehensive Awareness: One-stop service for holistic views and detailed insights, ensuring real-time situational awareness of reservoir operations.

Contributed in the facilitation of City Level Water Works BIM and digitalization Guidelines

Waterlogging/River/Reservoir
Monitoring

Safety and Flood: Develop reservoir safety and flood forecasting models.

Pollution and Quality: Simulate water pollution dispersion and assess water quality with unmanned boats.

Water Management Digitalization Project Guidelines

《深圳市水务行业信息化建设指导意见》

BIM Digital Twin: Model hydraulic structures, metal frameworks, and equipment in BIM. Integrated Data: Combine foundational, monitoring, and operational data for "one object, one code".

Advanced Management: Enable remote inspections, anomaly alerts, and refined visual management of facilities.

Water Management Project BIM Guidelines

《深圳市水务工程信息模型交付标准》《深圳市水务工程信息模型分类和编码标准》《深圳市水务工程信息模型应用统一标准》

Shen Zhen Smart Water Pilot: Water Purification Plant

National BIM Application Gold Award

第十届 "龙图杯" 全国BM(建筑信息模型)大赛综合组优秀奖

Overview

- Completed November 2022
- Process 50,000 Tons
 Wastewater /Day

Technology

- Advanced AO processes, precise aeration, and dosing
- 50% Lower Emission
- 73% Less land occupied

Operation

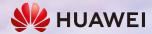
BIM + digitization enabled Smart Water Management

Smart FM BIM + IoT

Smart Inspection CCTV + VA Inspection

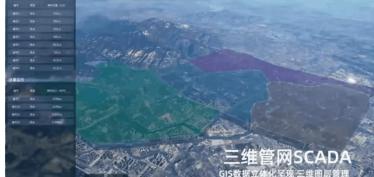
Smart Decision 24/7 Risk Monitoring

Smart Security CCTV, Gantry and Fibre


Smart Asset
IoT Asset Lifecycle Mgt

Smart Management Operation Mobile App **Smart Assistant** Al Production Assistant

Smart Response Remote Expert Support



Hong Kong Water Supply Smartization

WSD Private Cloud: Digital Twin

Simulation Result Render Engine

Environment Config Model Manager Simulation Batcher

Capability Library

Knowledge Graph Extracted Features

Relational Reasoning

Model Library

Water Supplies

Hydraulics

Control Logics

Knowledge Base

Business Process

Domain Knowledge

Network Modelling

Models water supply network digitally

Facilitates a digital library of network components

Illustrates physical features in digital expressions

Enables accurate supply network digitization

Condition Simulation

Provides CFD based simulations
Generate device level condition result
Abstract interim process for better performance
Enables ops condition testing before deployment

OM Monitoring

Tracks operation status of devices monitored

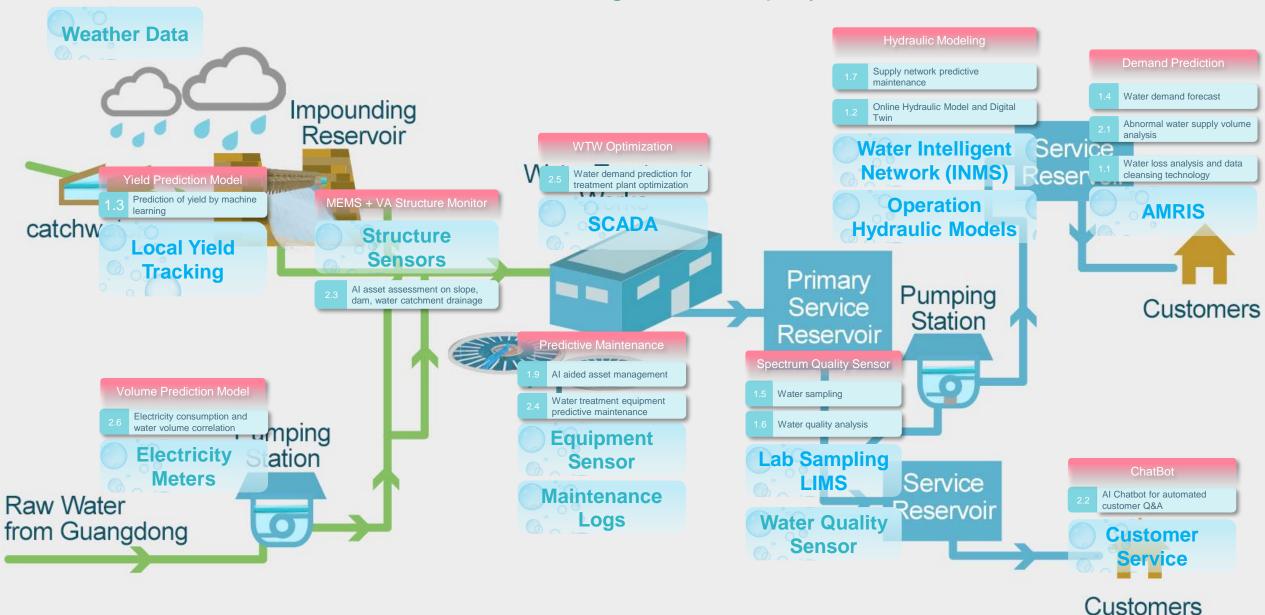
Facilitate portal for spare inventory logging

Monitors maintenance activities based on readings

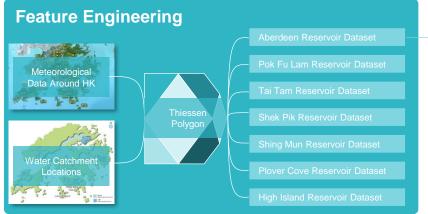
Enables auto OM effectiveness tracking

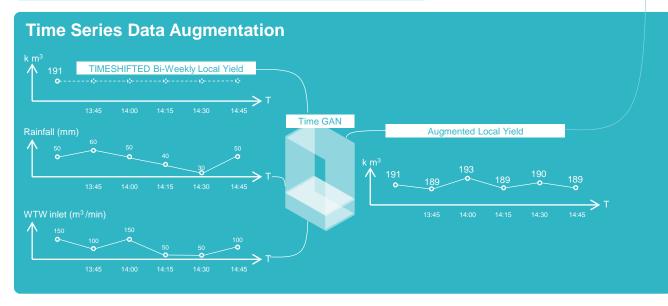
Fault Location

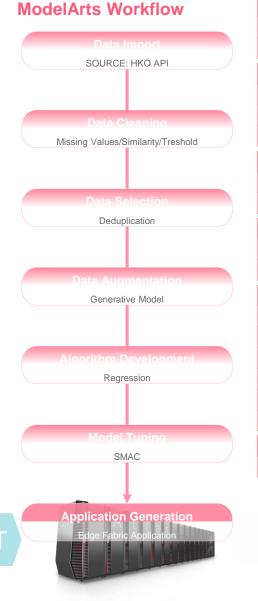
Registers geo locations of equipment digitized
Establishes relationship btw faults and OM events
Maintain the database of fault location prediction
Enables auto location of faults notified



WSD Private Cloud: Video Analytic Algorithm and Applications



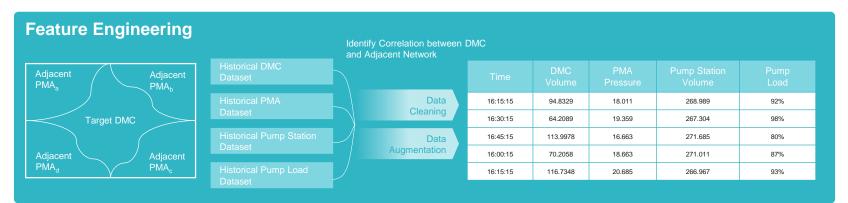

WSD Innovations: Whole Process Al Algorithm Deployment

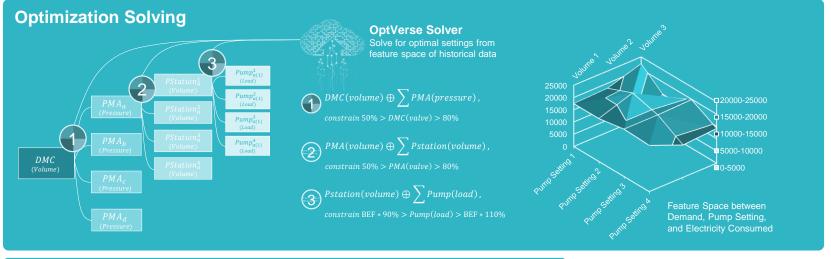


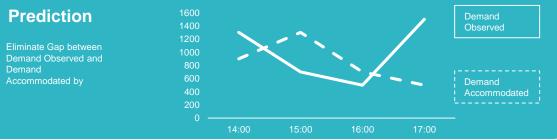
Yield Prediction Model

Data Import						
OBS	DLI	Local File				
MRS	DWS					
Data Analysis						
Bucket Static	Correlation DecisionTree					
DT Regressor	GBT	IsolationFrt				
rf	rf regression	entropy gain				
Data Processing						
Col Append	Association	Data sampling				
Data split	deduplication	KV transform				
Feature Engineering						
binarizer	Chi-sq	ft transform				
fp Growth	min max scaler	1 hot encoder				
Model Engineering						
Classification	Binary dt	Linear svc				
Clustering	bisect kmeans	gaussian mix				
Recommend	Alt least sq	Vector retrieval				
Regression	dt regressor	gbt regressor				
Text	td idf	nGram				
Time Series	ARIMA	Auto ARIMA				
AutoSearch						
SMAC	TPE	ft transform				

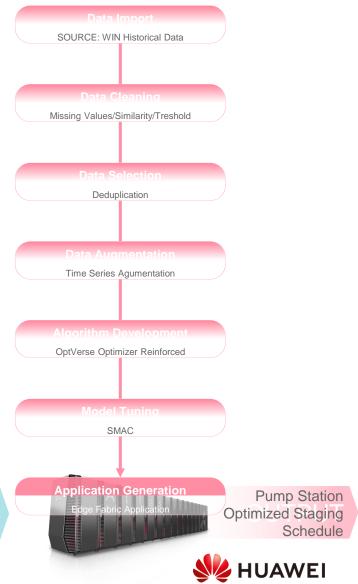
Yield Prediction

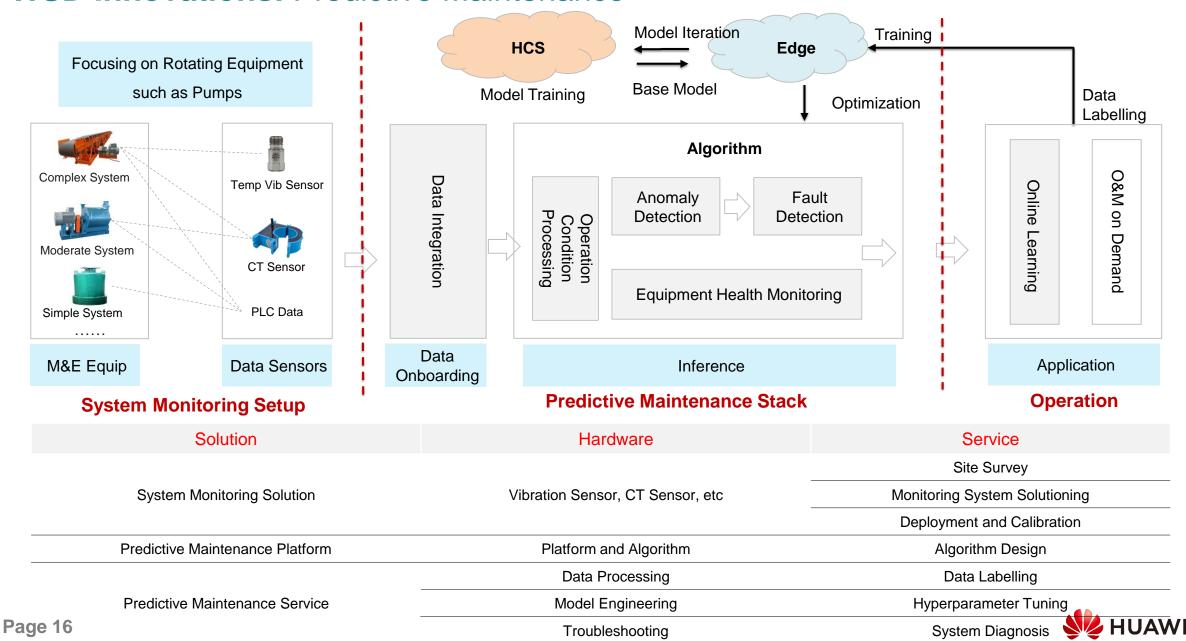





Demand Prediction

and Prediction


Volume Prediction Model


DMC Demand Predicted

Drone + AI based Structure Condition Monitoring

WSD Innovations: Predictive Maintenance

WSD Innovations: Shallow Water Hydraulic Model

Scenario

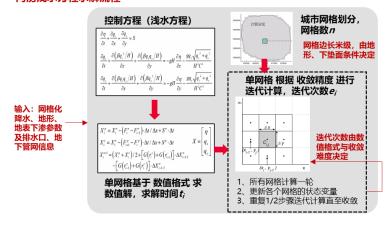
Flooding simulations lack real-time efficiency due to high computational costs

- 1. Flooding threatens riverbanks and residential areas.
- 2. Decision-makers need predictions for various weather and reservoir scenarios.
- 3. Current two-dimensional simulations are computationally expensive, hindering real-time forecasting.

Objective

Flood simulation achieving minute-level computations

Area: Urban watershed (> 100 km2)


Resolution: Meter-level grid (≤ 10m)

Computation Time: Within 10 minutes for 1-hour future inundation

Elements: Simulates direct water depth for calculating flooded area

Challenges

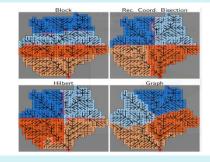
内涝浅水方程求解流程

- 1. Relying solely on more parallelism may not ensure timely predictions
- Efficiency optimization is crucial for solving shallow water equations and IO communication
- Challenges include longer solution times with smaller spatial scales and limitations on achieving linear expansion due to IO and communication constraints

Key Innovations

Factor 1: Adaptive Time Step $\triangle t$

Hydraulic modeling: 2D shallow water equations

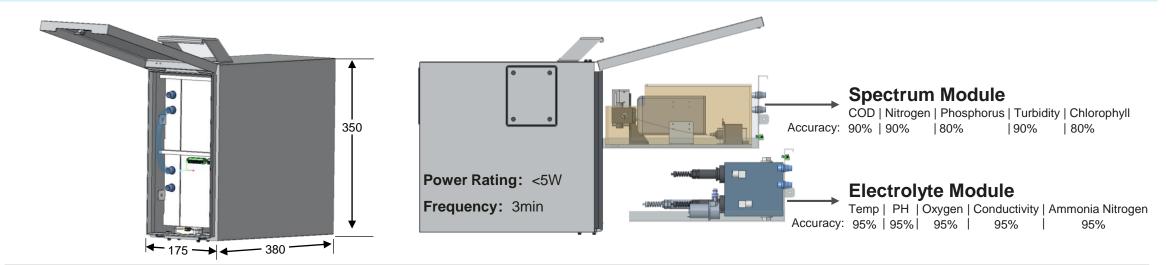

$$\frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0$$

$$\frac{\partial q_i}{\partial t} + gh\frac{\partial (h+z)}{\partial i} + \frac{gn^2}{h^{7/3}}\|\mathbf{q}\|q_i = 0, \quad i \in \{x,y\}$$

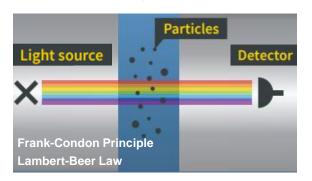
- q = flux [discharge per unit width, L² / T]
- h = water height
- z = surface elevation
- n = Manning friction coefficient

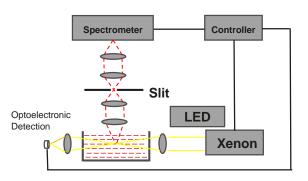
Optimizing the finite difference scheme for the shallow water equations to enhance stability, extending the time step (Δt), thereby reducing the number of computational iterations.

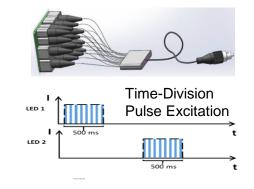
Factor 2: NPU-based SIMD parallelism

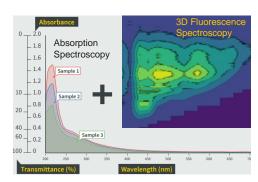


Creating a specialized spatially-discrete parallel operator for shallow water equations on NPU's multi-core architecture. Using optimized terrain-domain decomposition to improve parallel IO communication efficiency

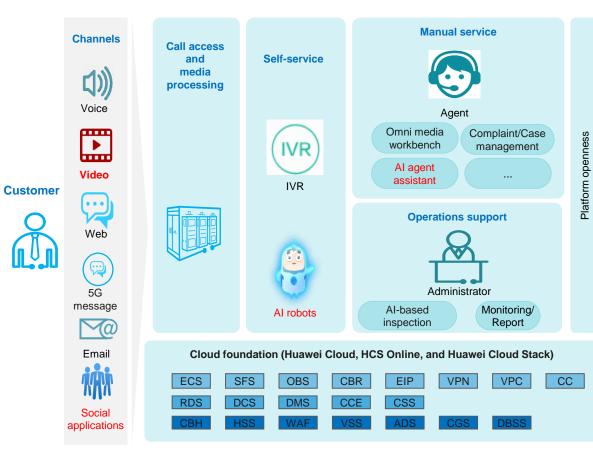



WSD Innovations: Water Quality Spectrum Sensor


- Dual-light source system (xenon lamp and LED array) for time-sequential acquisition of water pollution spectra
- Employing AI modeling to estimate concentrations of pollutants (COD, Nitrogen, Phosphorus)
- Coupled with electrode sensing, achieving real-time detection of 9 water quality parameters and chlorophyll at a minute level



Key Technology Stack



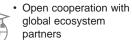
WSD Innovations: Chatbot

Al Call Centre

Solution Architecture

Solution Highlights

Video



- 5G native video without app installation
- Outbound video calls
- Omnichannel and omni media convergence

- Al robot for human-like interactions
- Full lifecycle management for all scenarios
- Al-based inspection

 Low-code development tool (DevOps)

Why Huawei Cloud

Optimal performance: High-performance cloud services, such as ECS, CCE, and RDS, used to improve processing capabilities.

Improved O&M efficiency: O&M management services and tools, such as Cloud Eye, AOM, and APM, are used to build O&M service capabilities. Tools, such as full-screen monitoring, are provided to help enterprises improve daily O&M efficiency.

E2E support: Our service teams work with ecosystem partners around the world to provide customers with E2E services, including consultation, migration, upgrade, implementation, and O&M.

Sales Strategies

- AICC call sell globally in all industries. In terms of target market selection, focus on markets such as finance and government, make breakthroughs in big NA, build NA showcases, and form demonstration effects, so as to replicate the experience in the industry on a large scale.
- Focus on key and big projects. Projects with fewer than 100 agents or less than US\$0.8 million should be fully supported by partners. Huawei does not directly participate in these projects.
- Public cloud deployment is preferred. OP deployment can also be used in scenarios where cloud migration conditions are not met or customers require OP deployment.

Itau, Brazil: 15,000+ agents

Success stories

Claro, Peru: 3,500 agents

